1. ADVANCED MACHINE DESIGN

Teaching Scheme:

Lectures: 3 Hrs/ Week

Practical: 1 Hr/ Week/ Batch

Examination Scheme:

Theory Paper (3 Hours): 100 marks

Term Work: 25 marks

Objectives:

1. To revise the fundamentals of stress analysis and vibration analysis.

2. To lay a strong foundation for design analysis.

1. Analysis of Stress: State of stress at a point, stress components on an arbitrary plane, principal stresses, Mohr’s circle, plane stress, differential equations of equilibrium, boundary conditions.

2. Analysis of Strain: State of strain at a point, dilation, plane strain, compatibility conditions.

3. Stress-Strain Relations: Generalizes Hooke’s Law, relations between elastic constants, displacement equations of equilibrium.

5. Energy Methods: Elastic strain energy, Maxwell-Betti-Rayleigh reciprocal theorem, Castiglano’s theorems, strain energy due to axial force, shear force, torsion, bending moment, theory of virtual work.

6. Axisymmetric Problems: Thick-walled cylinders, shrink fits, rotating discs.

7. Dynamic Analysis: Review of mechanical vibrations; Properties of eigen-values and eigenvectors, problem formulation for longitudinal, torsional and lateral vibrations; Sturm sequence, Jacobi, Given and Householder’s transformations; Iteration methods, Gram Schmidt deflation, subspace iteration, Lanczos’ method, Rayleigh-Ritz method; Mode synthesis; Direct integration methods; Mode superposition; Condition for stability.
Term Work: Minimum six assignments based on the above topics including two exercises involving analysis and design modification for critical components using reverse engineering approach. (e.g. need to change material specifications of a connecting rod, etc.)

- References:
 9. Mechanical Analysis & Design – Arhur H. Burr & John B. Chetham, Prentice Hall India
M.E. (CAD/CAM/CAE) Sem:– I
2. COMPUTER AIDED MANUFACTURING

Teaching Scheme:
Lectures: 3 Hrs/ Week

Examination Scheme:
Theory Paper (3 Hours): 100 marks

Objective: To study advanced features of CAM so as to be capable of accepting professional responsibilities and to understand the associativity between design and manufacturing.

1. Introduction to CAM: - CNC machine tools, Principle of operation of CNC, Construction features including structure, drives and CNC controllers, 2D and 3D machining on CNC

2. Theory of metal cutting – Types of work materials, material designation, machining parameters selection and calculations for difference metals, effect of heat treatment prior to machining, types of chips, selection of coolants for cutting, economics of machining parameters – optimizing cutting parameters for minimum cost and maximum production.

3. CNC Part Programming - Detailed Manual part programming on Lathe & Milling machines using G & M codes, FAPT programming (FANUC)

4. CNC Tooling:-Modern cutting tool materials and their applications, ISO nomenclature of tools and tool grades, Different types of tools and tool holders used on CNC Machines, parameters for selection of configuration of cutting tools, Modular toolings, work holding devices used on CNC machines

5. Advanced CNC processes - EDM, Wire EDM, Abrasive water jet, LASER cutting, RPT, (Working principles, construction or set up of process, applications)

9. Computer aided CNC part programming – Generation of tool path, generation of G & M codes, Optimization of tool path (to reduce machining time), Design changes for manufacturing problems. (Features available on a typical CAM software)

References:

4. Reference Manuals of FANUC, Siemens, Mazak, etc.
M.E. (CAD/CAM/CAE) Sem:– I
3. Finite Element Analysis

Teaching Scheme: Examination Scheme:
Lectures: 3 Hrs/ Week Theory Paper (4 Hours): 100 marks

Pre-requisites:

- A basic understanding of vectors, matrices and partial differential equations for thermal and mechanical problems.

Course Objectives:

- To provide the mathematical foundations of the finite element formulation for engineering applications
- To expose students to some of the recent trends and research areas in finite element analysis.

Course Contents:

1. Introduction to Finite Element Method:
Basic Concept, Historical Background, Engineering applications, general Description, comparison with other methods.

2. Integral Formulation and Variation Methods:
Need for weighted-integral forms, relevant mathematical concepts and formulate, weak formulation of boundary value problems, variational methods, Rayleigh-Ritz method and weighted residual approach

3. Finite Element Techniques:
Module boundary value problem, finite element decartelization, element shapes, sizes and node locations, interpolation functions, derivation of element equations, connectivity, boundary conditions, FEM solutions, post processing, Compatibility and completeness requirements, convergence criteria, higher order and isoparametric elements, natural coordinates, Lagrange and Hermit Polynomials
4. Applications to solid and structural mechanics problems:

External and internal equilibrium equations, one-dimensional stress-strain relations, plane stress and strain problems, axis symmetric and three dimensional stress strain problems, strain displacement relations, boundary conditions compatibility equations, analysis of trusses, frames and solid of revolution, computer programs.

5. Applications to heat transfer problems:

Variational approach, Galerikn approach, one dimensional and two dimensional steady state problems for conduction, convection and radiation, transient problems.

6. Applications to fluid mechanics problems:

Inviscid incompressible flow, potential function and stream function formulation, incompressible viscous flow, stream function, velocity-pressure and stream function voricity formulation, solution of incompressible and compressible fluid film lubrication problems, Additional Applications: Steady state and transient field problem.

7. Parameters affecting Accuracy of the FEA results:

How to validate and check accuracy of FEA results? Computational accuracy: strain energy norm, residuals, Reaction forces and moments; convergence test, Average and unaverage stress difference. Correlation with actual testing: strain gauging-stress comparison; natural frequency comparison; Dynamic response comparison, temperature and pressure distribution comparison.

Reference Books:

3. Finite Element Procedures by Bathe, Prentice-Hall.
4. Finite Element Analysis by P. Seshu
5. Practical Finite Element Analysis by Finite to Infinite - Author Nitin Gokhale
6. Introduction to Finite Elements in Engineering by Chandrupatala and Belegundu.
8. Finite Element Analysis – Theory & Practice by Fagan (Longman Scientific & Thenical)
M.E. (CAD/CAM/CAE) Sem: – I

4. Design of Experiments & Research Methodology

Teaching Scheme: Examination Scheme:

Lectures: 3 Hrs/ Week Theory Paper: 100 marks
Practical: 1Hr/Week Term Work: 25 marks

1. Introduction: Defining Research, Scientific Enquiry, Hypothesis, Scientific Method, Types of Research, Research Process and steps in it. Research Proposals – Types, contents, sponsoring agent’s requirements, Ethical, Training, Cooperation and Legal aspects

TERM WORK:

1. Collection and review of literature on a specific topic related to design or manufacturing engineering.
2. Assignment on data collection processing, analysis, interpretation, inferences and conclusions for an engineering problem.
3. Assignment on design of experiments using Taguchi technique.
5. Presentation of any one above using MS power-point or similar.

Reference Books:

1. Mechatronic System Design

Lecture: 3 hours per week
University Exam: Theory Paper 100 marks

Practical: 2 hrs per week
Term work: 25 marks

Course Objective
To study components of mechatronic systems and their integration for various applications.

1. Introduction
Introduction to mechatronic system, evolution, scope and components of mechatronic systems, mechatronics in product and measurement system, control system and modes of control, traditional design and mechatronic design (10%)

2. Actuators, Sensors and Transducers
Hydraulic, pneumatic and electrical actuators and their system modeling, performance terminology, system modeling of sensors; displacement, position and proximity sensors, velocity and acceleration sensors, flow sensors, force sensors, temperature sensors, ultrasonic and fibre-optic sensors, selection of sensor, piezo-electric sensors. (15%)

3. Hardware Components
Number systems in Mechatronics, binary logic, Karnaugh map minimization, transducer signal conditioning process, principals of analogue and digital signal conditioning, protection, filtering, operational and instrumentation amplifiers and their gains, analogue to digital and digital to analogue conversion, multiplexers, pulse modulation. (20%)

4. Programmable Logic Controller
Review of logic gates, basic structure, features, input/output processing, programming, functional block diagram (FBD), ladder diagram, logic functions, latching, sequencing, jumps, internal relays, counters, shift registers, master and jump control, data handling, data movement, data comparison, arithmetic operations, code conversion, analog input and output, applications for automation, diagnostics and condition monitoring. (20%)

5. Microcontroller
Comparison between microprocessor and microcontroller, organization of microcontroller system, architecture of MCS 51 controller, pin diagram of 8051, addressing modes, programming of 8051, interfacing input and output devices, interfacing D/A converters and A/D converters, Various applications for automation and control purpose. (15%)
6. **Real-Time Interfacing**
 (10%)

7. **Advanced Applications in Mechatronics**
 Mechatronic control in automated manufacturing, Artificial Intelligence in mechatronics, Fuzzy Logic application in Mechatronics, Microsensors in Mechatronics, Case studies of Mechatronic systems.
 (10%)

Term Work:

1. Minimum three programs on PLC for system automation involving of interfacing of sensors and actuators
2. One exercise on interfacing of sensors and actuators with microcontroller
3. At least two exercises on a total Mechatronic System Design for applications like packaging, loading/unloading, pick and place etc.

Reference Books:

1) Mechatronics, 3/e --- W. Bolton (Pearson Education)
2) Mechatronics -Dan Necsulescu (Pearson Education)
6) Process Control & Instrumentation Technology –Critis D. Johnson (Pearson Education)
7) Mechatronics System Design - Devdas Shetty, Richard A. Kolk (Thomson)
8) Computer Control of Manufacturing Systems - Yoram Koren (McGraw Hill)
10) Industrial Automation – David W. Pessen (John Wiley & Sons)
12) Modular Pick and Place Device– FESTO Controls Pvt. Ltd. Bangalore.
17) Handbook of Industrial Automation – Richard L. Shell & Ernest L. Hall (Marcel Decker Inc.)
1. Concepts of Technology Management:

 Description, Scope & Implications, Its relation to business management, systems Holistic Model of Management of Technology (MOT), Operational and Management Issues, Classification of Technology, Technology cycle, Industry-Institute partnership for targeted basic research. (20%)

2. Strategic management of technology:

 Technology-strategy relationship, Elements of technology strategy and formulation of a technology strategy, Integration of technology strategy and business strategy for competitive success technology, the environment and sustainable development (20%)

3. Organizational Aspects of technology management:

 Human dimension of technology and concepts of the entrepreneur, Organizational cultures and structures for promotion of creativity and innovation, the learning organization, the imperative of knowledge management (15%)

4. Acquiring technology through technology transfer:

 Definition, Source, Model of TT, System of TT with Public & Private Enterprises, Success and failure factors in technology transfer (10%)
5. Acquiring technology through research and development:

The concepts of invention and innovation, Definition and classifications of research and development, new product development, Challenges in commercializing research results (10%)

6. Intellectual Property Rights:

Patentable & non-patentable inventions, statutory exceptions, Persons entitled to apply for patents. (10%)

7. National innovation systems for facilitating technology-based development

Concepts of the national innovation system (NIS) and science and technology infrastructure, Various Government Schemes. (5%)

Introduction to AHP, se f AHP for Technology Selection cases like Information Technology – Software & Hardware, Machine Tools, and Industrial Products. (10%)

TERM WORK:

It shall consist of at least six assignments based on the syllabus, including Case Studies using Optimization & Simulation Software.

REFERENCES:

Strategic Management of Technological Innovation, 2/e (SIE)

Creating Breakthrough Products : Innovation from Product Planning to Program Approval, 1/e by Jonathan Cagan Craig M. Vogel Pearson Education ISBN 8129704927

Strategic Management of Technology and Innovation by Robert A. Burgelman, Clayton M. Christensen, Steven C. Wheelwright, and Modesto A. Maidique

Strategic Human Resource Management by Greer.

Managing Technical People by Humphrey, Pearsons.

M.E. (CAD/CAM/CAE) Sem:– I
5. ELECTIVE I

3. Tribology & Surface Engineering

Teaching Scheme:

- Lectures: 2 Hrs/ Week
- Practical: 2 Hrs/ Week

Examination Scheme:

- Theory Paper (4 Hours): 100 marks
- Term Work: 25 marks

Section I: Tribology

1. Friction Wear and Corrosion: Theory of friction- sliding and rolling friction, Tabor’s model of friction, Friction properties of metallic and non metallic materials, friction in extreme conditions, Wear, types of wear, mechanisms of wear, wear resistant materials, Mechanisms and types of corrosion, Measurement and testing of Friction, Wear and Corrosion, Prevention of wear and Corrosion. 10 %

2. Lubrication Theory: Lubricants and their physical properties, lubricants standards, Lubrication regimes, Hydrodynamic lubrication, Reynolds equation, Thermal, inertia and turbulent effects, Elasto, Plasto and magneto hydrodynamic lubrication, Hydrostatic, Gas lubrication. Design of fluid film bearings, Design of air bearing and gas bearing. 25 %

Section II: Surface Engineering.

4. Introduction to Surface Engineering: Concept and Scope of Surface Engineering, Mathematical modeling and manufacturing of surface layers, The solid surface-geometrical, mechanical and physico chemical concept, Three dimensional structure of surface, The superficial layer and its parameters. 10 %
5. Surface Engineering for Wear and Corrosion Resistance: Diffusion Coatings, Electro and Electroless platings, Hot dip coating, Metal Spraying, Cladded coatings, Crystallizing coatings, Flame and arc processes, Conversion coatings, selection of coatings for wear and corrosion resistance, Potential properties and parameters of coatings. 20 %

6. Thin Layer Engineering Processes: Laser and electron beam hardening, its process parameters and their effects, Physical vapour deposition, Thermal evaporationArc vapourisation, Sputtering, Chemical vapour deposition, ion implantation technique, Coating of tools, TiC, TiN, Al₂O₃ and Diamond coating properties, applications of thin Coatings. 20 %

Term Work:

1. Measurement of Friction sliding / Rolling friction - case study
2. Measurement of wear of cutting tool
5. Study of general characteristics of superficial layer obtained by Machining.
6. Industrial visit to study techniques of coating – case study.
7. Case study of Physical Vapour deposition method.
8. Case study of Chemical vapour deposition method.

Reference Books:

Web References:

M.E. (CAD/CAM/CAE) Sem:– I
Elective-I

5. Design & Development of CAD/CAM/CAE Software

Teaching Load:

- Lectures 3 Hrs/ week
- Practical: 2 Hrs/ Week

Examination Scheme:

- Theory: 100 marks
- Term work: 25 marks

Course Objective:

To understand the methodologies for development of CAD/CAM/CAE Software and its customization.

1. Introduction to Customization: Customization, Application Programming Interface (API), macros, scripts. (10%)
2. Tools for Customization: Object Oriented Programming (OOP), OLE interfaces in CAD/CAM software, Use of general programming interfaces like VB, VBS, VC++, OpenGL programming and System dependent programming interfaces like, Visual LISP (AutoCAD), GRIP (Unigraphics), Pro-Programming (Pro-Engineer), CATIA etc. (25%)
3. Computer-based System Engineering: System engineering process, Software product development life cycle, software processes, software development project management, software prototyping (20%)
4. Rapid Development: Core issues in rapid development, rapid development languages, life cycle planning and customer oriented development (10%)
5. Solid Modeling Algorithms: Euler operations, basic solid modeling algorithms (10%)

6. Automated Solid Modeling using Customization: Creating 2D, 3D and solid entities through API, Editing 2D, 3D and solid entities through API, Design and development of user interfaces- icons, menus, dialog boxes, integrating databases with CAD, creating bill of material or parts list, automated assembly modeling through customization, automated drafting and dimensioning using customization, creating automated animations using API and animation software. (25%)

Term Work:

Minimum six exercise based on the above syllabus.
Reference Books:

1. Rapid Development - Steve McConnel, Microsoft Press
2. Software Engineering – Ian Sommerville, Pearson Education
4. Open GL Programming Guide – Mason Woo et al,
5. Advanced AutoCAD – George Omura
6. Customizing AutoCAD – Shyam Tickoo, Thomson Learning
7. CATIA - Shyam Tickoo, Thomson Learning
8. Solid Modelling – Martti Mantilya, Computer Science Press
9. Solid Works API Using VB and C++ - Custom Programming Unlimited LLC
10. GRIP Programming Manuals for Unigraphics – Vol. I & II
12. User Manuals for CATIA
M.E. (CAD/CAM/CAE) Sem:– I

5. Elective-I

6. Advanced Materials & Processing

Teaching Load:

| Lectures 3 Hrs/ week | Practical: 2 Hrs/ Week |

Examination Scheme

| Theory: 100 marks | Term work: 25 marks |

Objective:

1. To familiarize the students with latest developments in material science and materials to cope up with requirements of industry.
2. To familiarize the students with developments in non conventional manufacturing Processes

Section I

1. Review of engineering materials- metals, alloys- ferrous and non-ferrous, plastics and polymers, ceramics and composites. Dual phase steels, micro alloyed steels, High strength low alloy steels, transformation inducted plasticity (TRIP) steels, Maraging steels. Heat treatment of ferrous and non ferrous alloys for modification of structure and properties. 8 %

3. Non Metallic Materials- Polymer materials, formation of polymer structures, production techniques of fibers, foams, adhesives and coatings. Structure, properties and applications of engineering polymers. Advanced structural ceramics, WC, TiC, TaC, Al2O3, SiC, Si3N4, CBN and diamond- properties, processing and applications. 10%

fabrication methods, Infiltration, squeeze casting, Rheo casting, compo casting. Applications of MMC’s.

Section II

1. Classification and types of conventional manufacturing processes- forging, rolling, extrusion, wire drawing, sheet metal processes. Manufacturing automation, Non traditional manufacturing processes. Economics of non traditional and automated manufacturing. Introduction to micromachining and MEMS. Introduction to coatings and tribology 12.5%

2. Rapid prototyping: Product development cycle & importance of prototyping. Types of prototypes, principles and advantages and different types of generative manufacturing processes, viz. stereolithography, FDM, SLS etc. Factors concerning to RP: consideration for adaptations, advantages, accuracy, economic considerations. 12.5%

3. Non conventional machining processes: Introduction and ned for non-conventional machining processes, Principle and theory of material removal. Process parameters, advantages, limitations and applications of ultrasonic machining, laser beam machining and electrochemical machining 12.5%

4. Special processes and electronic fabrication: Principles, salient features, advantages and applications of abrasive floor machining, magnetic abrasive finishing, wire EDM, electrochemical grinding, honing, lapping and super finishing. Principles, elements, process, advantages, applications and surface preparation etc. of physical vapor deposition, chemical vapor deposition, electro less coating and thermal metal spraying. 12.5%

1) Term work:
Minimum six exercises to be performed based on above topics.

2) Reference Books:
 1) “HMT Handbook” – Production Technology (TMH)
 2) “Non-traditional machining processes”, Willer, SME publications.
 3) “Advanced Manufacturing Processes”, G.F.Benidict, Marcel Dekker Publisher
5) “Design & Manufacturing of Composite Structures”, Geoff Eckold (Jaico Publishing House)
M.E. (CAD/CAM/CAE) Sem:– I

6. CAD/CAM Laboratory

Teaching Scheme:
Practical: 2 Hrs/ Week

Examination Scheme:
Term Work: 50 marks
Practical: 25 marks

1. Introduction to Modeling software :
 - 2D drawing and drafting using sketcher workbench – 2 drawings
 - 3D modeling and drafting using 3D features – 5 models
 - Assembling and drafting of 2 assemblies.
 - Surface modeling – 4 exercises

2. Computer aided manufacturing:
 - CNC Lathe – 4 exercises
 - CNC Milling – 4 exercises
 Generation of tool path, generation of NC code, Optimization of tool path
 (to reduce machining time) using any CAM software

3. Co-ordinate Measuring Machine:
 Case study: Inspection of a component using different probes, generation of report
 and interface (for example – Gears, Housings, Flywheels, Walls of machine structure, etc.)

Note- 1. The term- work will be accessed on the basis of completion of above assignments and submission of report.

2. Practical examination: Duration 3 hours, Candidate will carry out one exercise in modeling and one exercise in CNC part programming/simulation/ manufacturing, followed by oral examination.
M.E. (CAD/CAM/CAE) Sem: – I

7. Design and Analysis Laboratory – I

Teaching Scheme: Examination Scheme:
Practical: 2 Hrs/ Week Term Work: 25 marks
 Oral / Practical: 25 marks

Minimum eight assignments are to be completed on following area using appropriate software.

1. Structural Analysis
2. Thermal Analysis
3. Fluid Flow Analysis
4. Coupled Field Analysis
5. Modal Analysis

- Minimum four problems shall be solved with hand calculations.
- In addition to above a visit to some facility where any of the above is actually used to prepare report of the same.
- Term work shall be assessed on the basis of completion of above assignments and submission of reports.
- Practical examination: Duration 3 hours – The candidate shall carry out analysis using suitable FEA software followed by oral examination.
M.E. (CAD/CAM/CAE) Sem.: – I

8. Seminar – I

Teaching Scheme:
Practical: 1 Hour/ Week

Examination Scheme:
Term Work: 25 marks

Seminar - I should be based on the literature survey on any topic relevant to CAD/CAM/CAE. It may be leading to selection of a suitable topic of dissertation.

Each student has to prepare a write-up of about 25 pages. The report typed on A4 sized sheets and bound in the necessary format should be submitted after approved by the guide and endorsement of the Head of Department.

The student has to deliver a seminar talk in front of the teachers of the department and his classmates. The Guide based on the quality of work and preparation and understanding of the candidate shall do an assessment of the seminar.
1. MANUFACTURING SYSTEMS DESIGN

Teaching Scheme: Examination Scheme:
Lectures: 3 Hrs/ Week Theory Paper: 100 marks
Practical: 1 Hr/Week Term Work: 25 marks

1. Fundamentals: System concept, Hierarchical structure, System design, Decision making procedure, System types in manufacturing environments;

Manufacturing Systems: Structural aspects, transformational aspects, procedural aspects, integrated manufacturing systems; Modes of Production- Jobbing / Intermittent / Continuous; Mass Production- Economies of Scale, Optimum production scale, Mass Customization; Multi-Product Small Batch Production- Economies of Scope with Diversification; Logistic Systems- Material flow: conversion / transportation / storage

(20%)

3. Manufacturing Optimization: Criteria for Evaluation, Optimization of single stage manufacturing- Unit production time and cost; Optimization of multistage manufacturing system- Scope, basic mathematical models; Cost Estimating- Classical metal cutting cost analysis, Industrial cost estimation practices, Estimating material, setup and cycle times. (15%)

4. Information Systems in Manufacturing: Database structures, hierarchical, network, Relational- concepts, keys, relational operations, query languages; Shop Floor Data Collection Systems- Types of data, on-line and off-line data collection, Automatic data collection systems. (15%)
5. Computer Simulation in Manufacturing System Analysis: Characteristics, Simulation Models, applications of probability and statistics;

Design and evaluation methodology of manufacturing systems, General design framework, Analysis of situation, Setting objectives, Conceptual modeling, Detailed design, Evaluation and Decision. (20%)

6. Modern approaches in Manufacturing: Cellular Manufacturing- Group Technology, Composite part, Rank Order Clustering Technique, Hollier method for GT cell layouts; Flexible Manufacturing- Concept, components, architecture; Lean Production- concept, principles, Agile Manufacturing- concept, principles and considerations for achieving agility. (15%)

TERM WORK:

Minimum Five exercises from the following:

1. Case Study of a manufacturing system in a small / medium organization.
2. Exercise on Concurrent Engg., Optimum routing analysis, Line Balancing
3. Exercise on Optimization of Single stage / Multi stage manufacturing system
5. Creation of a relational database for a module of a manufacturing system and use of a suitable query language
6. Exercise on designing and analysis GT Cell layouts
7. Simulation and performance testing of a manufacturing system

Reference Books:

ISBN 0412562006, 9780412562006
M.E. (CAD/CAM/CAE) Semester– II
2. Product Life Cycle Management

Teaching Scheme:
Lectures: 3 Hrs/ Week
Practical: 1 Hr/Week

Examination Scheme:
Theory Paper: 100 marks
Term Work: 25 marks

1. INTRODUCTION : Background, Overview, Need, Benefits, Concept of Product Life Cycle. Components / Elements of PLM, Emergence of PLM, Significance of PLM, Customer Involvement. (5)

4. PRODUCT MODELLING :

Product Modeling - Definition of concepts - Fundamental issues - Role of Process chains and product models -Types of product models - model standardization efforts-types of process chains - Industrial demands. (5)
5. TYPES OF ANALYSIS TOOLS:

Design for manufacturing - machining - casting and metal forming - optimum design - Design for assembly and disassembly - probabilistic design concepts - FMEA - QFD - Taguchi Method for design of experiments - Design for product life cycle. Estimation of Manufacturing costs, Reducing the component costs and assembly costs, Minimize system complexity. (5)

6. PRODUCT DATA MANAGEMENT (PDM) TECHNOLOGY - Product Data Management – An Introduction to Concepts, Benefits and Terminology, CIM Data. PDM functions, definition and architectures of PDM systems, product data interchange, portal integration, PDM acquisition and implementation. (5)

7. RECENT ADVANCES:

Intelligent Information Systems - Knowledge based product and process models - Applications of soft computing in product development process - Advanced database design for integrated manufacturing. (4)

Term Work: (Minimum Six Assignments)

It shall consist of hands-on case assignments on suitable PLM software and other assignments based on the syllabus.

References:

M.E. (CAD/CAM/CAE) Semester– II
3. Industrial Automation and Robotics

Teaching Scheme:
Lectures: 3 Hrs/ Week

Examination Scheme:
Theory Paper: 100 marks

1. **Introduction:** Automated manufacturing systems, fixed /programmable /flexible automation, need; Basic elements of automated systems- power, program and control; Advanced automation functions, Levels of automation; Industrial control systems in process and discrete manufacturing industries, Continuous and discrete control; Low cost automation, Economic and social aspects of automation. (20%)

2. **Transfer Lines:** Fundamentals, Configurations, Transfer mechanisms, storage buffers, control, applications; Analysis of transfer lines without and with storage buffers. (10%)

3. **Assembly Automation:** Types and configurations, Parts delivery at workstations- Various vibratory and non-vibratory devices for feeding and orientation, Calculations of feeding rates, Cycle time for single station assembly machines and partially automated systems; Product design for automated assembly. (15%)

4. **Fundamentals of Industrial Robots:** Specifications and Characteristics, Basic components, configurations, Criteria for selection, Various industrial applications. (15%)

5. **Robotic Control Systems:** Drives, Robot Motions, Actuators, Power transmission systems; Robot controllers, Dynamic properties of robots- stability, control resolution, spatial resolution, accuracy, repeatability, compliance. (10%)

6. **Robotic End Effectors and Sensors:** Transducers and sensors- sensors in robotics and their classification, Touch (Tactile) sensors, proximity and range sensors, force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot-End effector interface, Active and passive compliance, Gripper selection and design. (20%)

7. **Robot Programming:** Lead through method, Robot program as a path in space, Methods of defining positions in space, Motion interpolation, branching; Textual robot programming languages. (10%)
Reference Books:

M.E. (CAD/CAM/CAE) Semester– II

4. Optimization Techniques

Teaching Scheme: Examination Scheme:

Lectures: 3 Hrs/ Week Theory Paper: 100 marks
Practical: 1 Hr/Week Term Work: 25 marks

5. Genetic Algorithm, Simulated Annealing, Artificial Neural Networks (3)
6. Theory of Constraints: Introduction to TOC, Optimized Production Technology (OPT), Nine principles of OPT, Five Focusing Steps (The 5FS) of TOC, Capacity Constrained Resources and the Time Buffer, Modeling the Time Buffer, Modeling Return-On-Investment (ROI) in TOC, Comparison of TOC and Local Optimization Approaches (3)

Term work: Minimum six exercises based on the above syllabus.

Reference Books:

1. Introduction: CFD as the third dimension of fluid mechanics. Numerical Discretization methods such as Finite Difference, FEM and FVM. Why FVM as preferred method in CFD. (25%)

3. Numerical methods for Convection -Diffusion eqns: Upwinding and central difference schemes. Stability condition in terms of Courant number. (25%)

4. Numerical Methods for Inviscid Flows: Characteristic form of eqns. Flux difference splitting. Application to 2-D flows such as flow through a nozzle. (20%)

5. Numerical methods for Incompressible flows: The continuity eqn divergence constraint. Poisson eqn. for pressure. Schemes such as SIMPLE due to Patankar and Spalding. (15%)

Term Work:

Practical exercises (6 to 8) using Software packages like ANSYS, ICEM HEXA, FLUENT, CFX, COSMOS or equivalent on the following topics like,

1. Convection equation in one dimension.
2. Diffusion equation in one dimension.
3. One dimensional flow through a nozzle.
4. Flow over a cylinder and backward facing step.
Reference Books:

M.E. (CAD/CAM/CAE) Semester— II
5. Elective II- 2. Quality and Reliability Engineering

Teaching Scheme: Examination Scheme:
Lectures: 3 Hrs/ Week Theory Paper: 100 marks
Practical: 1 Hr/Week Term Work: 25 marks

Section I: Quality Engineering

2. Steps in Robust Design, Quality Characteristics and Objective Functions, Control Factors and their Levels, Noise Factors and Testing Conditions, Planning and Conducting the Experiment (2)
3. Response Surface Methodology – First-order and Second-order Models (8)

Section II: Reliability Engineering

1. The Reliability Function, Failure Rate, Hazard Rate, Bath-tub Curve, Relationship between Various Reliability Characteristics (3)
2. Component Reliability, Mean-time-to-failure, Time-dependent Hazard Models – Constant-hazard, Linear-hazard, Nonlinear-hazard and Gamma Models (3)
4. Maintained Systems, Classification of Maintenance Activities: Breakdown, Preventive and Predictive Maintenance, Condition Monitoring, Maintainability and Availability, Reliability-centered Maintenance (4)

Reference Books

Pre-requisites for Quality and Reliability Engineering

Section I:

Experimental design fundamentals, Guidelines for designing experiments, Concepts of replication, blocking and randomization, Statistical techniques in experimentation, Sampling and sampling distributions, Confidence intervals, Inferences about means and variances

Experiments with single factor, Analysis of variance, Fixed effect model – Parameter estimation, Model adequacy checking, Residual plots, Comparing treatment means, Designing and testing contrasts

Factorial design, Two-factor factorial design, The 2^2 design and 2^3 design – Parameter estimation, Model adequacy checking

Section II:

Probability – Concept, Definitions, Rules of probability, Bayesian theorem

Continuous distributions – Normal, Lognormal, Exponential, Gamma, Chi-squared, and Weibull distribution

Discrete distributions – Binomial, Poisson, and Negative binomial distribution
M.E. (CAD/CAM/CAE) Semester— II
5. Elective II- 3. SYSTEM DYNAMICS AND SIMULATION

Teaching Scheme: Examination Scheme:

Lectures: 3 Hrs/ Week Theory Paper: 100 marks
Practical: 1 Hr/Week Term Work: 25 marks

Tutorial
It shall consists of six exercises based on the syllabus

Text Books

References
M.E. (CAD/CAM/CAE) Semester– II
5. Elective II- 4. Artificial Intelligence

Teaching Scheme:

Lectures: 3 Hrs/ Week
Practical: 1 Hr/Week

Examination Scheme:

Theory Paper: 100 marks
Term Work: 25 marks

1. Concept of A.I., Approaches, Foundations of A.I., Underlying assumptions (5%)

2. Problem Formulation: Problem solving agents, Components of problem definition, defining the problem as state space approach, Problem characteristics, Production System, searching for solutions, Forward and backward reasoning, means end analysis, Graphs and trees, measuring problem solving performance (15%)

3. Search Strategies: a) Uninformed (blind) search- breadth first, depth first, and their variations, avoiding repeated states; b) Informed (heuristic) search- heuristic function, Generate and test, Best first search, A* search, Local search algorithms- Hill climbing, Simulated annealing, Branch and bound and Local beam search, (20%)

4. Knowledge Representation: Simple rational knowledge, Inheritable knowledge, Inferential knowledge, Procedural knowledge, the Frame problem, Propositional logic- Syntax and semantics, well formed formulas (WFF), conversion to clausal form, using FOPL, inference rules, unification, non-deductive inference methods, resolution, forward and backward chaining, the knowledge engineering process, Handling uncertain knowledge, probability propositions, atomic events, unconditional (prior) and conditional (posterior), priority Bayes’ rule and its use, Bayesian network, its semantics and inference. (20%)

5. Learning: Forms of learning, inductive learning, decision tree learning, ensemble learning, Pattern recognition- Introduction, recognition, and classification process, learning classification patterns. (10%)

6. Knowledge based systems: Expert systems, components, characteristic features of expert systems, rule based system architecture, representing and using domain knowledge, expert system shell, explaining the reasoning and knowledge acquisition, applications. (15%)

7. A.I. in Robotics: State space search, path selection, AND-OR graphs, means end analysis in a robotic problem, robot problem solving as a production system, robot
learning and task planning, symbolic spatial relationship, obstacle avoidance, graph planning. (15%)

8. Machine Vision: Functions, imaging devices, lighting, A-D conversion, quantization, encoding image storage, image data reduction, segmentation techniques, feature extraction, object recognition, training the vision system, applications. (10%)

Term Work:

1. Minimum six programming exercises using a suitable language (i.e. PROLOG, LISP, C++ etc.) preferably in CAD/CAM related areas
2. One case study on applications of A.I. and E.S. in CAD/CAM or Management

Reference Books:

3. Dan W. Patterson (1999), “Introduction to Artificial Intelligence and Expert Systems” (7th Indian Reprint) (EEE) (Prentice Hall of India)
7. Conference Proceedings and current journals for case studies and applications.
5. Elective II- 5. Automatic Control Engineering

Teaching Scheme: Examination Scheme:

Lectures: 3 Hrs/ Week Theory Paper: 100 marks
Practical: 1 Hr/Week Term Work: 25 marks

1. Introduction to Automatic Control Systems:-Basic definition, Structure of a feedback systems, closed loop and open loop control systems. Laplace Transformation, Building blocks and transfer functions of mechanical, electrical, thermal and hydraulic systems. Mathematical models of physical systems, control systems components. Systems with dead time, control hardware and their models, Electro-hydraulic valves, hydraulic servomotors, synchros, LVDT, electro-pneumatic valves, pneumatic actuators. (20%)

2. Basic characteristic of feedback control systems:-Stability, steady state accuracy, transient accuracy, disturbance rejection, insensitive and robustness ,Basic models of feedback control systems:-Proportional, integral,deritive and PID, feed forward and multi loop control configurations, stability ,concept of relative stability. (20%)

3. Root locus and frequency response methods, stability in frequency domain, frequency domain methods of design, compensation and their realization in time and frequency domain, improving system performance,, (20%)

4. Design of Lead lag compensators, OpAmp based and digital implementation of compensators, Tuning of process controllers. (15%)

5. Introduction to design, sample data control systems, stable variable analysis and design, optimal control systems. (10%)

6. Introduction to non linear control systems, Discrete time systems and Z-Transformation
methods, Microprocessor based digital control, State space analysis, Optimal and adaptive control systems. (15%)

Term Work:

Term Work shall consists of four design problems solved using MATLAB and three assignments based on the above topics. Additional exercises using Bond Graphs for system modelling may be carried out.

Reference Books:

M.E. (CAD/CAM/CAE) Semester– II
5. Elective II- 6. CAD/CAM/CAE Applications In Metal Forming

Teaching Scheme: Examination Scheme:
Lectures: 3 Hrs/ Week Theory Paper: 100 marks
Practical: 1 Hr/Week Term Work: 25 marks

Section – I

1 Introduction:-
 1.1 Process Modeling
 1.2 The finite Element method
 1.3 Solid formulation & how formation
 1.4 Metal forming & FEM

2 Metal forming Processes:-
 21. Introduction
 2.2 Metal forming operations as a system
 2.3 Classification & Description of metal forming processes
 2.4 Casting process

3 Analysis & Technology in metal forming
 3.1 Introduction
 3.2 Flow stress of metals
 3.3 Friction in metal forming
 3.4 Temperatures in metal forming
 3.5 Impression & closed die forging
 3.6 Hot extrusion of Rods & Shapes
 3.7 Cold forging & extrusion
3.8 Rolling of strip, plate & shapes
3.9 Drawing of Rod, wire, shapes & Tubes
3.10 Sheet metal forming, fine blanking

4 Plasticity and Viscoplasticity
4.1 Introduction
4.2 Stress, strain and strain rate
4.3 The yield criteria
4.4 Equilibrium & Virtual work rate principle
4.5 Plastic potential & How rate
4.6 Strain Hardening, Effective stresses & Effective strain
4.7 Viscoplasticity

5 Method of analysis
5.1 Introduction
5.2 Upper Bound method
5.3 Hills General Method
5.4 FEM

6 Analysis Technology in metal casting
6.1 Introduction
6.2 Cast ability of important Ferrous & Non-ferrous metal
6.3 Shrinkage
6.4 Effect of Temperature
6.5 Effect of composition

SECTION – 1

7 Finite Element method
7.1 Introduction
7.2 Finite Element Procedures
7.3 Elements & shape function
7.4 Element strain rate matrix
7.5 Elemental stiffness equation
7.6 Numerical integrations
7.7 Assemblage & Linear matrix solver
7.8 Boundary condition
7.9 Direct / Iteration method
7.10 Time investment & Geometry updating
7.11 Rezoning
8 Plane – strain problems
 8.1 Introduction
 8.2 Finite Element formulation
 8.3 Closed die forging with flash
 8.4 Sheet Rolling
 8.5 Plate Bending
 8.6 Side pressing

9 Ax symmetric Isothermal forging
 9.1 Introduction
 9.2 Finite Element formation
 9.3 Preform design method 9.3’- Die design
 9.4 Shell nosing at room temperature
 9.5 Plane strain rolling
 9.6 Axially Symmetric forging

10 Steady state processes of Extrusion and Drawing
 10.1 Introduction
 10.2 Method of Analysis
 10.3 Bar Extrusion
 10.4 Bar Drawing
 10.5 Multi pass bar drawing & Extrusion
 10.6 Applications to process design

11 Sheet metal forming
 11.1 Introduction
 11.2 Plastic Anisotropy
 11.3 In plane actormation process
 11.4 Axe symmetric but of plane deformation
 11.5 Axe symmetric Punch stretching & deep drawing process
 11.6 Sheet metal forming of General shapes
 11.7 Square – cup drawing process

12 Metal Casting
 12.1 Introduction
 12.2 Casting Design
 12.3 FEA analysis
 12.4 Die / pattern Design
 12.5 Casting Simulation – Gating Design
 12.6 Die / Pattern manufacture
TERM WORK

Minimum Four Exercises using suitable software packages for the simulation.

1. Forging simulation to predict die fill load, energy & defect formation for simple components
2. Extrusion simulation to validates design of extrusion dies & process, Simulation of metal flow & heat transfer
3. Casting simulation to predict fluid flow, hot spots- shrinkage, designing of Gating & rising
4. Forging preform & Die design and FEA
5. Casting Design and FEA
6. Sheet metal simulation for validating forming feasibility, predict blank sizing, minimizing material scrap, determine wrinkles, splits etc.

Reference Books

1. Mechanical Metallurgy (2/e)– by Dieter (McGraw Hill)
2. Metal Casting – Dr. B. Ravi – (Prentice Hall of India)
3. Metal Forming & Finite Element Method – by Shiro Kobjashi
 Oxford University.
4. Technology of Metal Forming Processes, -Surender Kumar (EEE)(PHI)
M.E. (CAD/CAM/CAE) Semester– II
5. Elective II- 7. RAPID PROTOTYPING

Teaching Scheme:
Theory Paper: 100 marks

Lectures: 3 Hrs/ Week
Practical: 1 Hr/Week
Term Work: 25 marks

Chapter 1
Introduction to RP, Technology Description, Definition to RP, Overview of RP, Benefits and Application.

Chapter 2

Chapter 3
Classes of RP systems: 3D Printers, Enterprise Prototyping centers, Direct digital tooling, Direct digital manufacturing, system classification, Stereo lithography, SL with photo polymerization, SL with liquid thermal polymerization, Selective Laser Sintering, Fused deposition modeling, Laminated object manufacturing, Laser powder forming

Chapter 4
Prototype properties: Material properties, color, dimensional accuracy, stability, surface finish, machinability, environmental resistance, operational properties

Chapter 4
RP Applications: Design, Concept Models, Form & fit checking, Ergonomic Studies, Functional testing, Requesting Price quotes, CAD data verification, Rapid Tooling,
Rapid manufacturing, Science & Medicine, Archeology, Paleontology & forensic Science, miniaturization

TERM WORK

1. two Assignments on 3SD modeling & STL File generation of industrial components.
2. Study of RP Processes and their parameters
3. Study of 3D printing & its applications
4. Use of Rapid tooling for injection molds
5. Use of RP for reverse engineering

REFERENCES

5. Rapid & Virtual Prototyping & applications, C. E. Bocking, AEW Rennie, Wiley Eastern

WEBSITES

2. http://home.utah.edu/
3. http://www.me.psu.edu
4. http://itri.loyola.edu/rp/02
5. http://www.udri.udayton.edu/
M.E. (CAD/CAM/CAE) Semester— II
6. Design & Analysis Laboratory - II

Teaching Scheme: Examination Scheme:
Practical 2 Hrs./Week Term Work: 25 Marks

Practical/Oral Examination: 25 Marks

Minimum eight exercises are to be completed on following topics using suitable software packages.

1. Transient Thermal Analysis
2. Dynamic Analysis
3. Non-Linear Analysis
4. Design Optimization through FEA (Two Exercises)
5. Computational Fluid Dynamics (Optional)
6. A Composite project based on Exercises of Design & Analysis Laboratory I and II.

The Term work shall be assessed on the basis of completion of above exercises and submission of report.

Practical Examination duration: 3 Hours

The candidate shall carry out analysis using suitable software package followed by oral examination.
M.E. (CAD/CAM/CAE) Semester– II

7. AUTOMATION & SIMULATION LABORATORY

2 Hrs. per week

Term work: 25 marks

Practical Exam: 25 marks

The laboratory work shall consist of exercises as given below

1) Design of hydraulic / pneumatic circuits for different machine tools, automation projects and their performance testing
2) Study and design of automation projects in material handling
3) Flexible automation assignments using PLC, different sensors and actuators
4) Control of electrical motors using microcontroller / microprocessor.
5) Simulation of Robotic system for automation
6) Simulation / Performance analysis of a manufacturing system
7) Simulation of Electrohydraulic / Electropneumatic circuits

• Term work shall be assessed on the basis of completion of above assignments and submission of reports.
• Practical examination: Duration 3 hours – The candidate shall carry out the practical exercise on one of the above topics. It will be followed by an oral examination.
M.E. (CAD/CAM/CAE) Sem.:– II

8. Seminar – II

Teaching Scheme: Examination Scheme:
Practical: 1 Hour/ Week Term Work: 25 marks

Seminar - II should be based on the literature survey on any topic relevant to
CAD/CAM/CAE. It may be leading to selection of a suitable topic of dissertation. The
report shall contain some contribution by the candidate in the form of experimental
results, deductions, compilation and inferences etc.

Each student has to prepare a write-up of about 25 pages. The report typed on A4 sized
sheets and bound in the necessary format should be submitted after approved by the guide
and endorsement of the Head of Department.

The student has to deliver a seminar talk in front of the teachers of the department and his
classmates. The Guide based on the quality of work and preparation and understanding of
the candidate shall do an assessment of the seminar.
A Mini Project based on the subjects studied during Semester-I and Semester-II, shall be undertaken and completed by the candidate during vacation after Semester-II. The report of this project shall be submitted in the prescribed format at the beginning of Semester III. It will be approved by the guide and endorsed by the Head of Department. It will be assessed for term work during Semester III, by the evaluation committee(*) appointed by the Head of the Department.
M.E. (CAD/CAM/CAE) Semester– III

2. Seminar- III

Teaching Scheme:
Practical: 1 Hour/ Week

Examination Scheme:
Term Work: 25 marks
Oral Examination: 25 Marks

Seminar - III shall be based on topic of the Dissertation Work. It may include literature review, required theoretical input, study and comparison of various approaches for the proposed dissertation work. The candidate shall prepare a report of about 25 pages. The report typed on A4 sized sheets and bound in the prescribed format shall be submitted after approval by the Guide and endorsement of the Head of Department. It will be assessed for term work by the evaluation committee(*) appointed by the Head of the Department.

Dissertation

The dissertation work to be carried out individually commences in the Semester III and extends through Semester IV. The topic of dissertation work related should be related to the areas of CAD/CAM/CAE applications. Applications of computer as a tool for conceptualization, design, analysis, optimization, manufacturing, manufacturing planning /management, quality engineering, simulation of products / processes / mechanisms / systems, experimental study, etc. are to be encouraged and preferred.

(The candidates shall submit the synopsis to the University authorities for approval in the prescribed format before the due date.)
M.E. (CAD/CAM/CAE) Semester– III

3. Dissertation Phase I

Teaching Scheme:

Practical: 2 Hour/ Week

Examination Scheme:

Term Work: 50 marks

It shall include the problem definition, literature survey, approaches for handling the problem, finalizing the methodology for the dissertation work and design calculations / experimental design etc. A report of the work shall be submitted at the end of Semester III after approval by the Guide and endorsement of the Head of Department. It will be assessed for term work, by the evaluation committee(*) appointed by the Head of the Department, for appropriateness, sufficiency of contents and offer suggestions if any.
M.E. (CAD/CAM/CAE) Semester– IV

1. Dissertation Phase II

Teaching Scheme:

Practical: 4 Hour/ Week

Examination Scheme:

Term Work: 100 marks

Oral Examination: 200 Marks

The candidate shall submit the detailed report as per the synopsis approved by the university, of the dissertation work in the prescribed format after approval by the Guide and endorsement by the Head of the Department. It will be assessed for term work by the evaluation committee(*) appointed by the Head of the Department, for completion of the proposed work.

(*) Note: The evaluation committee shall consist of the Guide, one senior expert faculty member and the Head of the Department or his/her representative.